SOLUTION OF A NONLINEAR HEAT-CONDUCTION
EQUATION FOR VOLUME HEAT SOURCES

O. A. Eismont UDC 536.2

Solutions of a nonlinear heat-conduction equation which are self-similar or self-similar in
the limit are discussed for a given tofal input power,

Solutions of a nonlinear heat-conduction equation which are self-similar or self-similar in the limit
are digcussed in detail in [1, 2] for a broad class of problems. We present solutions of a similar equation
for volume heat sources.

1. We consider a medium whose electrical and thermal conductivities vary as powers of the tempera-
ture. We assume the medium is at zero temperature and is placed between two infinite plane electrodes to
which a certain potential difference is applied. At time t= 0 a breakdown of the medium occurs over a plane
or along a line and the total input power to the medium varies as a power of the time. Then the temperature
distribution in the medium will be given by
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where v = 1, 2, 3 according as the problem has plane, axial, or central symmetry. We seek the solution
of Eq. (1) for the initial condition T(r, 0) = 0 and the boundary conditions

T(r, 0)=0;
2 wv=1,
Ap) AT dr = QY 720, pv) =4 21 v=2,
° 4n v=23.

It is clear from dimensional considerations that the problem will be self-similar if
(A —m) v—2(+ D] =@+ D [t —nv=2].
Then the temperature is given by the expression
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and the boundary conditions

f(e0) =0,
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The problem cannot be solved in general form. We consider the special case of m = 1,

We multiply (2) by £? ! and integrate from 0 to «, If f(¢) falls off fast enough at infinity we have
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from which
A=y+1,
if there is no point source of heat at the origin,
Equation (2) is then easily integrated
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The integration constant £ is found from (3)
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We note that for a linear thermal conductivity (n = 1) the solution has the form
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2, We now congider the equation
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which corresponds to a constant potential difference between the electrodes, under the conditions

T(r, —®)=0;
Dy (v)i A Tdr =Qe™.
0

The second condition expresses the exponential time increase of the total input power. In this case the solu-
tion which is self-similar in the limit has the form
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The function £(£) is found from the equation
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and the boundary conditions
[ (o) =0,

D o(v) j 2l @) dE=1.
@ 0

As in Section 1, if there is no point source of heat at r = 0, we obtain D = a.
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The selution of Eq. (4) will then have the form

where
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NOTATION

is the temperature;

is the time;

is the linear coordinate;

is the thermal diffusivity;
desecribe the total input power.
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